Correction: Hecate/Grip2a Acts to Reorganize the Cytoskeleton in the Symmetry-Breaking Event of Embryonic Axis Induction
نویسندگان
چکیده
Maternal homozygosity for three independent mutant hecate alleles results in embryos with reduced expression of dorsal organizer genes and defects in the formation of dorsoanterior structures. A positional cloning approach identified all hecate mutations as stop codons affecting the same gene, revealing that hecate encodes the Glutamate receptor interacting protein 2a (Grip2a), a protein containing multiple PDZ domains known to interact with membrane-associated factors including components of the Wnt signaling pathway. We find that grip2a mRNA is localized to the vegetal pole of the oocyte and early embryo, and that during egg activation this mRNA shifts to an off-center vegetal position corresponding to the previously proposed teleost cortical rotation. hecate mutants show defects in the alignment and bundling of microtubules at the vegetal cortex, which result in defects in the asymmetric movement of wnt8a mRNA as well as anchoring of the kinesin-associated cargo adaptor Syntabulin. We also find that, although short-range shifts in vegetal signals are affected in hecate mutant embryos, these mutants exhibit normal long-range, animally directed translocation of cortically injected dorsal beads that occurs in lateral regions of the yolk cortex. Furthermore, we show that such animally-directed movement along the lateral cortex is not restricted to a single arc corresponding to the prospective dorsal region, but occur in multiple meridional arcs even in opposite regions of the embryo. Together, our results reveal a role for Grip2a function in the reorganization and bundling of microtubules at the vegetal cortex to mediate a symmetry-breaking short-range shift corresponding to the teleost cortical rotation. The slight asymmetry achieved by this directed process is subsequently amplified by a general cortical animally-directed transport mechanism that is neither dependent on hecate function nor restricted to the prospective dorsal axis.
منابع مشابه
A Computational Study to Find the Vibrational Modes Connected with Specific Molecular Structures of Calculated Compound
The purpose of this research is to provide a deeper understanding of the planar high- symmetry configuration instability. In the ideal case, the distortion corresponds to the movements of nuclei along normal modes that belong to non-totally symmetric irreps of the high symmertry (HS) point group of molecule. The analysis of the structural distortion from the HS nuclear arrangements of the JT ac...
متن کاملCalculations of Dihedral Groups Using Circular Indexation
In this work, a regular polygon with $n$ sides is described by a periodic (circular) sequence with period $n$. Each element of the sequence represents a vertex of the polygon. Each symmetry of the polygon is the rotation of the polygon around the center-point and/or flipping around a symmetry axis. Here each symmetry is considered as a system that takes an input circular sequence and g...
متن کاملCellular symmetry breaking during Caenorhabditis elegans development.
The nematode worm Caenorhabditis elegans has produced a wellspring of insights into mechanisms that govern cellular symmetry breaking during animal development. Here we focus on two highly conserved systems that underlie many of the key symmetry-breaking events that occur during embryonic and larval development in the worm. One involves the interplay between Par proteins, Rho GTPases, and the a...
متن کاملActive torque generation by the actomyosin cell cortex drives left–right symmetry breaking
Many developmental processes break left-right (LR) symmetry with a consistent handedness. LR asymmetry emerges early in development, and in many species the primary determinant of this asymmetry has been linked to the cytoskeleton. However, the nature of the underlying chirally asymmetric cytoskeletal processes has remained elusive. In this study, we combine thin-film active chiral fluid theory...
متن کاملCritical behavior and axis defining symmetry breaking in Hydra embryonic development.
The formation of a hollow cellular sphere is often one of the first steps of multicellular embryonic development. In the case of Hydra, the sphere breaks its initial symmetry to form a foot-head axis. During this process a gene, ks1, is increasingly expressed in localized cell domains whose size distribution becomes scale-free at the axis-locking moment. We show that a physical model based sole...
متن کامل